2021-32-bit-holiday-jam/src/main.rs

851 lines
21 KiB
Rust

use glam::{Mat4, Vec3, Vec4, Quat};
use nom::{
IResult,
bytes::complete::{tag},
number::complete::{le_u32},
};
use sdl2::event::Event;
use sdl2::keyboard::{Keycode, Scancode};
use std::collections::HashMap;
use std::convert::TryInto;
use std::ffi::{c_void, CStr, CString};
use std::fs::File;
use std::io::Read;
use std::path::Path;
use std::time::{Duration, Instant};
mod iqm_consts {
pub const VERSION: usize = 0;
pub const FILESIZE: usize = 1;
pub const FLAGS: usize = 2;
pub const NUM_TEXT: usize = 3;
pub const OFS_TEXT: usize = 4;
pub const NUM_MESHES: usize = 5;
pub const OFS_MESHES: usize = 6;
pub const NUM_VERTEXARRAYS: usize = 7;
pub const NUM_VERTEXES: usize = 8;
pub const OFS_VERTEXARRAYS: usize = 9;
pub const NUM_TRIANGLES: usize = 10;
pub const OFS_TRIANGLES: usize = 11;
pub const OFS_ADJACENCY: usize = 12;
pub const NUM_JOINTS: usize = 13;
pub const OFS_JOINTS: usize = 14;
pub const NUM_POSES: usize = 15;
pub const OFS_POSES: usize = 16;
pub const NUM_ANIMS: usize = 17;
pub const OFS_ANIMS: usize = 18;
pub const NUM_FRAMES: usize = 19;
pub const NUM_FRAMECHANNELS: usize = 20;
pub const OFS_FRAMES: usize = 21;
pub const OFS_BOUNDS: usize = 22;
pub const NUM_COMMENT: usize = 23;
pub const OFS_COMMENT: usize = 24;
pub const NUM_EXTENSIONS: usize = 25;
pub const OFS_EXTENSIONS: usize = 26;
}
mod iqm_types {
pub const POSITION: u32 = 0;
pub const TEXCOORD: u32 = 1;
pub const NORMAL: u32 = 2;
pub const TANGENT: u32 = 3;
pub const BLENDINDEXES: u32 = 4;
pub const BLENDWEIGHTS: u32 = 5;
pub const COLOR: u32 = 6;
pub const CUSTOM: u32 = 0x10;
}
mod iqm_formats {
pub const BYTE: u32 = 0;
pub const UBYTE: u32 = 1;
pub const SHORT: u32 = 2;
pub const USHORT: u32 = 3;
pub const INT: u32 = 4;
pub const UINT: u32 = 5;
pub const HALF: u32 = 6;
pub const FLOAT: u32 = 7;
pub const DOUBLE: u32 = 8;
}
#[derive (Debug)]
pub struct IqmMesh {
name: u32,
material: u32,
first_vertex: u32,
num_vertexes: u32,
first_triangle: u32,
num_triangles: u32,
}
#[derive (Debug)]
pub struct IqmHeader {
fields: [u32; 27],
}
#[derive (Debug)]
pub struct IqmVertexArray {
va_type: u32,
va_flags: u32,
va_format: u32,
va_size: u32,
va_offset: u32,
}
#[derive (Debug)]
pub struct IqmModel <'a> {
data: &'a [u8],
header: IqmHeader,
text: Vec <u8>,
meshes: Vec <IqmMesh>,
vertexarrays: Vec <IqmVertexArray>,
}
impl IqmHeader {
pub fn from_slice (input: &[u8]) -> IResult <&[u8], IqmHeader> {
let (input, _) = tag (b"INTERQUAKEMODEL\0")(input)?;
let (input, version) = le_u32 (input)?;
// I only know how to parse version 2
assert_eq! (version, 2);
let mut input = input;
let mut fields = [0; 27];
fields [0] = version;
for index in 1..fields.len () {
let (i, h) = le_u32 (input)?;
input = i;
fields [usize::from (index)] = h;
}
Ok ((input, IqmHeader {
fields,
}))
}
}
impl IqmMesh {
pub fn from_slice (input: &[u8]) -> IResult <&[u8], IqmMesh> {
let mut result = IqmMesh {
name: 0,
material: 0,
first_vertex: 0,
num_vertexes: 0,
first_triangle: 0,
num_triangles: 0,
};
let mut input = input;
for field in [
&mut result.name,
&mut result.material,
&mut result.first_vertex,
&mut result.num_vertexes,
&mut result.first_triangle,
&mut result.num_triangles,
].iter_mut () {
let (i, f) = le_u32 (input)?;
input = i;
**field = f;
}
Ok ((input, result))
}
}
impl IqmVertexArray {
pub fn from_slice (input: &[u8]) -> IResult <&[u8], IqmVertexArray> {
let mut result = IqmVertexArray {
va_type: 0,
va_flags: 0,
va_format: 0,
va_size: 0,
va_offset: 0,
};
let mut input = input;
for field in [
&mut result.va_type,
&mut result.va_flags,
&mut result.va_format,
&mut result.va_size,
&mut result.va_offset,
].iter_mut () {
let (i, f) = le_u32 (input)?;
input = i;
**field = f;
}
Ok ((input, result))
}
}
impl <'a> IqmModel <'a> {
pub fn from_slice (data: &'a [u8]) -> IqmModel <'a> {
let header = IqmHeader::from_slice (data).unwrap ().1;
let text = {
let offset: usize = header.fields [iqm_consts::OFS_TEXT].try_into ().unwrap ();
let num: usize = header.fields [iqm_consts::NUM_TEXT].try_into ().unwrap ();
Vec::from (&data [offset..offset + num])
};
let meshes = {
let num: usize = header.fields [iqm_consts::NUM_MESHES].try_into ().unwrap ();
let mut meshes = Vec::with_capacity (num);
let mesh_size = 6 * 4;
let meshes_offset: usize = header.fields [iqm_consts::OFS_MESHES].try_into ().unwrap ();
for i in 0..num {
let offset = meshes_offset + i * mesh_size;
let mesh_slice = &data [offset..offset + mesh_size];
meshes.push (IqmMesh::from_slice (mesh_slice).unwrap ().1);
}
meshes
};
//println! ("{:?}", meshes);
let vertexarrays = {
let num: usize = header.fields [iqm_consts::NUM_VERTEXARRAYS].try_into ().unwrap ();
let mut vertexarrays = Vec::with_capacity (num);
let vertexarray_size = 5 * 4;
let vertexarrays_offset: usize = header.fields [iqm_consts::OFS_VERTEXARRAYS].try_into ().unwrap ();
for i in 0..num {
let offset = vertexarrays_offset + i * vertexarray_size;
let vertexarray_slice = &data [offset..offset + vertexarray_size];
let vertexarray = IqmVertexArray::from_slice (vertexarray_slice).unwrap ().1;
//println! ("{:?}", vertexarray);
vertexarrays.push (vertexarray);
}
vertexarrays
};
IqmModel {
data,
header,
text,
meshes,
vertexarrays,
}
}
pub fn get_vertex_slice (&self,
vertexarray_index: usize
) -> &[u8]
{
let vertexarray = &self.vertexarrays [vertexarray_index];
let bytes_per_float = 4;
let stride = bytes_per_float * vertexarray.va_size;
//assert_eq! (stride, 12);
let offset: usize = (vertexarray.va_offset).try_into ().unwrap ();
let num_bytes: usize = (stride * self.header.fields [iqm_consts::NUM_VERTEXES]).try_into ().unwrap ();
&self.data [offset..offset + num_bytes]
}
pub fn get_index_slice (&self, mesh_index: usize) -> &[u8] {
let mesh = &self.meshes [mesh_index];
let bytes_per_u32 = 4;
let indexes_per_tri = 3;
let stride = bytes_per_u32 * indexes_per_tri;
let offset: usize = (self.header.fields [iqm_consts::OFS_TRIANGLES] + stride * mesh.first_triangle).try_into ().unwrap ();
let num_bytes: usize = (stride * mesh.num_triangles).try_into ().unwrap ();
&self.data [offset..offset + num_bytes]
}
}
pub fn load_small_file <P> (name: P) -> Vec <u8>
where P: AsRef <Path>
{
let mut f = File::open (name).unwrap ();
let len = f.metadata ().unwrap ().len ();
if len > 1024 * 1024 {
panic! ("File is too big");
}
let mut data = vec! [0u8; len.try_into ().unwrap ()];
f.read (&mut data [..]).unwrap ();
data
}
pub fn ugly_load_texture <P> (name: P) -> u32
where P: AsRef <Path>
{
let decoder = png::Decoder::new (File::open (name).unwrap ());
let (info, mut reader) = decoder.read_info ().unwrap ();
// Allocate the output buffer.
let mut buf = vec! [0; info.buffer_size ()];
// Read the next frame. Currently this function should only called once.
// The default options
reader.next_frame (&mut buf).unwrap ();
unsafe {
gl::BindTexture (gl::TEXTURE_2D, 1);
gl::TexImage2D (gl::TEXTURE_2D, 0, gl::RGBA.try_into ().unwrap (), 1024, 1024, 0, gl::RGBA, gl::UNSIGNED_BYTE, &buf [0] as *const u8 as *const c_void);
gl::TexParameteri (gl::TEXTURE_2D, gl::TEXTURE_WRAP_S, gl::CLAMP_TO_EDGE as i32);
gl::TexParameteri (gl::TEXTURE_2D, gl::TEXTURE_WRAP_T, gl::CLAMP_TO_EDGE as i32);
gl::TexParameteri (gl::TEXTURE_2D, gl::TEXTURE_MIN_FILTER, gl::NEAREST as i32);
gl::TexParameteri (gl::TEXTURE_2D, gl::TEXTURE_MAG_FILTER, gl::NEAREST as i32);
}
1
}
const VERT_SHADER_SRC: &str =
"
#define lowp
#define mediump
#define highp
#line 0
uniform highp mat4 uni_mvp;
attribute highp vec4 attr_pos;
attribute mediump vec2 attr_uv;
attribute lowp vec3 attr_normal;
varying mediump vec2 vary_uv;
varying lowp vec3 vary_normal;
void main (void) {
vary_uv = attr_uv;
lowp vec4 light_color = vec4 (1.0);
vary_normal = attr_normal;
gl_Position = uni_mvp * attr_pos;
}";
const FRAG_SHADER_SRC: &str =
"
#define lowp
#define mediump
#define highp
#line 0
uniform lowp sampler2D uni_texture;
uniform lowp vec3 uni_albedo;
uniform lowp vec3 uni_object_space_light;
uniform lowp vec3 uni_min_bright;
uniform lowp vec3 uni_min_albedo;
//varying lowp vec4 vary_color;
varying lowp vec3 vary_normal;
varying mediump vec2 vary_uv;
void main (void) {
lowp vec3 normal = normalize (vary_normal);
lowp vec3 albedo = uni_albedo * max (uni_min_albedo, texture2D (uni_texture, vary_uv).rgb);
//lowp vec3 albedo = vec3 (vary_uv, 0.0);
lowp float diffuse_factor = dot (normal, uni_object_space_light);
lowp vec3 sun = max (diffuse_factor, 0.0) * vec3 (0.95, 0.9, 0.85);
lowp vec3 sky = (diffuse_factor * 0.45 + 0.55) * vec3 (0.05, 0.1, 0.15);
lowp vec3 diffuse_color = albedo * max (uni_min_bright, (sun + sky));
gl_FragColor = vec4 (sqrt (diffuse_color), 1.0);
}
";
pub struct ShaderObject {
id: u32,
}
impl ShaderObject {
pub fn id (&self) -> u32 {
self.id
}
pub fn new (shader_type: u32, source: &str) -> Result <ShaderObject, String>
{
let id = unsafe {
gl::CreateShader (shader_type)
};
let sources = [
source.as_ptr () as *const i8,
];
let lengths = [
source.len ().try_into ().unwrap (),
];
let success = unsafe {
gl::ShaderSource (id, sources.len ().try_into ().unwrap (), sources.as_ptr (), lengths.as_ptr ());
gl::CompileShader (id);
let mut success = 0;
gl::GetShaderiv (id, gl::COMPILE_STATUS, &mut success);
success == 1
};
if success {
Ok (ShaderObject {
id,
})
}
else {
let mut info_log = vec! [0u8; 4096];
let mut log_length = 0;
unsafe {
gl::GetShaderInfoLog (id, (info_log.len () - 1).try_into ().unwrap (), &mut log_length, info_log.as_mut_ptr () as *mut i8);
}
info_log.truncate (log_length.try_into ().unwrap ());
let info = String::from_utf8 (info_log).unwrap ();
Err (info)
}
}
}
impl Drop for ShaderObject {
fn drop (&mut self) {
unsafe {
gl::DeleteShader (self.id);
}
}
}
pub struct ShaderProgram {
id: u32,
}
impl ShaderProgram {
pub fn new (vert: &ShaderObject, frag: &ShaderObject)
-> Result <ShaderProgram, String>
{
let id = unsafe {
gl::CreateProgram ()
};
unsafe {
gl::AttachShader (id, vert.id ());
gl::AttachShader (id, frag.id ());
gl::LinkProgram (id);
}
let success = unsafe {
let mut success = 0;
gl::GetProgramiv (id, gl::LINK_STATUS, &mut success);
success == 1
};
if success {
Ok (ShaderProgram {
id,
})
}
else {
let mut info_log = vec! [0u8; 4096];
let mut log_length = 0;
unsafe {
gl::GetProgramInfoLog (id, (info_log.len () - 1).try_into ().unwrap (), &mut log_length, info_log.as_mut_ptr () as *mut i8);
}
info_log.truncate (log_length.try_into ().unwrap ());
let info = String::from_utf8 (info_log).unwrap ();
Err (info)
}
}
pub fn get_uniform_location (&self, name: &CStr) -> i32 {
unsafe {
gl::UseProgram (self.id);
gl::GetUniformLocation (self.id, name.as_ptr ())
}
}
pub fn get_attribute_location (&self, name: &CStr) -> i32 {
unsafe {
gl::UseProgram (self.id);
gl::GetAttribLocation (self.id, name.as_ptr ())
}
}
}
impl Drop for ShaderProgram {
fn drop (&mut self) {
unsafe {
gl::DeleteProgram (self.id);
}
}
}
fn enable_vertex_attrib_array (id: Option <u32>) {
match id {
Some (id) => unsafe {
gl::EnableVertexAttribArray (id);
},
_ => (),
}
}
unsafe fn vertex_attrib_pointer (id: Option <u32>, num_coords: i32, slice: &[u8]) {
const FALSE_U8: u8 = 0;
const FLOAT_SIZE: i32 = 4;
match id {
Some (id) => {
gl::VertexAttribPointer (id, num_coords, gl::FLOAT, FALSE_U8, FLOAT_SIZE * num_coords, &slice [0] as *const u8 as *const c_void);
},
_ => (),
}
}
unsafe fn point_to_model (
attrs: &HashMap <String, Option <u32>>,
model: &IqmModel
) {
vertex_attrib_pointer (attrs ["pos"], 3, model.get_vertex_slice (0));
vertex_attrib_pointer (attrs ["uv"], 2, model.get_vertex_slice (1));
vertex_attrib_pointer (attrs ["normal"], 3, model.get_vertex_slice (2));
}
const KEY_LEFT: usize = 0;
const KEY_RIGHT: usize = KEY_LEFT + 1;
const KEY_UP: usize = KEY_RIGHT + 1;
const KEY_DOWN: usize = KEY_UP + 1;
const KEY_COUNT: usize = KEY_DOWN + 1;
struct ControllerState {
keys: Vec <bool>,
}
impl ControllerState {
pub fn from_sdl_keyboard (k: &sdl2::keyboard::KeyboardState) -> Self {
let f = |c| k.is_scancode_pressed (c);
Self {
keys: vec! [
f (Scancode::Left),
f (Scancode::Right),
f (Scancode::Up),
f (Scancode::Down),
],
}
}
pub fn is_pressed (&self, code: usize) -> bool {
self.keys [code]
}
}
struct WorldState {
azimuth: f32,
altitude: f32,
spin_speed: i32,
}
impl WorldState {
pub fn new () -> Self {
Self {
azimuth: 0.0,
altitude: 0.0,
spin_speed: 0,
}
}
pub fn step (&mut self, controller: &ControllerState) {
const SPIN_RAMP_TIME: i32 = 30;
let spin_f = 4.0 * self.spin_speed as f32 / SPIN_RAMP_TIME as f32;
if controller.is_pressed (KEY_LEFT) {
self.spin_speed = std::cmp::min (self.spin_speed + 1, SPIN_RAMP_TIME);
self.azimuth += spin_f;
}
else if controller.is_pressed (KEY_RIGHT) {
self.spin_speed = std::cmp::min (self.spin_speed + 1, SPIN_RAMP_TIME);
self.azimuth -= spin_f;
}
else if controller.is_pressed (KEY_UP) {
self.spin_speed = std::cmp::min (self.spin_speed + 1, SPIN_RAMP_TIME);
self.altitude = f32::min (90.0, self.altitude + spin_f);
}
else if controller.is_pressed (KEY_DOWN) {
self.spin_speed = std::cmp::min (self.spin_speed + 1, SPIN_RAMP_TIME);
self.altitude = f32::max (-90.0, self.altitude - spin_f);
}
else {
self.spin_speed = 0;
}
}
}
fn main () {
let sdl_context = sdl2::init ().unwrap ();
let video_subsystem = sdl_context.video ().unwrap ();
let window = video_subsystem.window ("OpenGL? In my Rust?", 1280, 720)
.position_centered ()
.opengl ()
.build ()
.unwrap ();
gl::load_with (|s| {
let result = video_subsystem.gl_get_proc_address (s) as *const _;
//println! ("{:?}", result);
result
});
assert! (gl::ClearColor::is_loaded ());
let gl_ctx = window.gl_create_context ().unwrap ();
window.gl_make_current (&gl_ctx).unwrap ();
// I love how with Rust I can throw unwrap ()s everywhere
// It's safer than C / C++'s default behavior of unchecked errors
// It's more programmer-friendly and explicit than C#'s unchecked
// exceptions that can appear almost anywhere at runtime with no
// compile-time warning
// And I'm still not actually checking errors - Just checkmarking
// that I know where they are.
let vert_shader = ShaderObject::new (gl::VERTEX_SHADER, VERT_SHADER_SRC).unwrap ();
let frag_shader = ShaderObject::new (gl::FRAGMENT_SHADER, FRAG_SHADER_SRC).unwrap ();
let shader_program = ShaderProgram::new (&vert_shader, &frag_shader).unwrap ();
let unis: HashMap <_, _> = vec! [
"mvp",
"object_space_light",
"albedo",
"min_albedo",
"min_bright",
"texture",
].iter ()
.map (|name| {
let mut s = String::from ("uni_");
s.push_str (name);
let c_str = CString::new (s.as_bytes ()).unwrap ();
let loc = shader_program.get_uniform_location (&c_str);
println! ("Uni {} --> {}", name, loc);
(String::from (*name), loc)
})
.collect ();
let attrs: HashMap <_, Option <u32>> = vec! [
"pos",
"uv",
"normal",
].iter ()
.map (|name| {
let mut s = String::from ("attr_");
s.push_str (name);
let c_str = CString::new (s.as_bytes ()).unwrap ();
let loc = shader_program.get_attribute_location (&c_str);
let loc = match loc.try_into () {
Ok (i) => Some (i),
_ => {
println! ("Attribute {} not found - Optimized out?", name);
None
},
};
(String::from (*name), loc)
})
.collect ();
let texture = ugly_load_texture ("sky.png");
let model_data = load_small_file ("pumpking.iqm");
let model = IqmModel::from_slice (&model_data [..]);
let sky_data = load_small_file ("sky-sphere.iqm");
let sky_model = IqmModel::from_slice (&sky_data [..]);
const FALSE_U8: u8 = 0;
unsafe {
enable_vertex_attrib_array (attrs ["pos"]);
enable_vertex_attrib_array (attrs ["uv"]);
enable_vertex_attrib_array (attrs ["normal"]);
gl::Enable (gl::DEPTH_TEST);
gl::Enable (gl::TEXTURE);
let num_coords = 3;
let stride = 4 * num_coords;
}
let mut last_frame_time = Instant::now ();
let mut frame = 0;
let mut timestep_accum = Duration::from_millis (0);
let mut state = WorldState::new ();
let mut event_pump = sdl_context.event_pump ().unwrap ();
'running: loop {
let frame_time = Instant::now ();
// Take 60 steps every 1,000 milliseconds.
// I know this is a float, but since we're multiplying it will
// be deterministic, since it's a whole number.
let fps_num = 60.0;
let fps_den = 1000;
timestep_accum += (frame_time - last_frame_time).mul_f32 (fps_num);
let controller = ControllerState::from_sdl_keyboard (&event_pump.keyboard_state ());
for _ in 0..4 {
if timestep_accum > Duration::from_millis (fps_den) {
frame += 1;
timestep_accum -= Duration::from_millis (fps_den);
state.step (&controller);
}
else {
break;
}
}
last_frame_time = frame_time;
let _mouse = event_pump.mouse_state ();
for event in event_pump.poll_iter() {
match event {
Event::Quit {..} |
Event::KeyDown { keycode: Some (Keycode::Escape), .. } => {
break 'running
},
_ => (),
}
}
window.gl_make_current (&gl_ctx).unwrap ();
//let longitude = (frame as f32).to_radians ();
let longitude = state.azimuth.to_radians ();
let latitude = (state.altitude - 90.0).to_radians ();
//let latitude = (frame as f32 / 5.0).to_radians ().sin () * -40.0f32.to_radians () - 75.0f32.to_radians ();
let proj_mat = Mat4::perspective_rh_gl (30.0f32.to_radians (), 1280.0 / 720.0, 0.5, 500.0);
let model_mat =
Mat4::from_translation (Vec3::from ((0.0, 0.0, -2.7 * 0.5)))
;
let view_mat = proj_mat *
Mat4::from_translation (Vec3::from ((0.0, 0.0, -8.0))) *
Mat4::from_rotation_x (latitude) *
Mat4::from_rotation_z (longitude)
;
let mvp_mat = view_mat * model_mat;
let sky_mvp_mat = view_mat * Mat4::from_scale (Vec3::from ((16.0, 16.0, 16.0)));
let light = Vec3::from ((2.0, 0.0, 5.0)).normalize ();
let object_space_light = model_mat.inverse () * Vec4::from ((light.x (), light.y (), light.z (), 0.0));
let orange = Vec3::from ((255.0 / 255.0, 154.0 / 255.0, 0.0 / 255.0));
let green = Vec3::from ((14.0 / 255.0, 127.0 / 255.0, 24.0 / 255.0));
let white = Vec3::from ((1.0, 1.0, 1.0));
let black = Vec3::from ((0.0, 0.0, 0.0));
let orange = orange * orange;
let green = green * green;
unsafe {
gl::ClearColor (1.0f32, 1.0f32, 1.0f32, 1.0f32);
gl::Clear (gl::COLOR_BUFFER_BIT | gl::DEPTH_BUFFER_BIT);
gl::Disable (gl::CULL_FACE);
gl::Uniform3fv (unis ["min_bright"], 1, &black as *const Vec3 as *const f32);
gl::Uniform3fv (unis ["min_albedo"], 1, &white as *const Vec3 as *const f32);
gl::UniformMatrix4fv (unis ["mvp"], 1, FALSE_U8, &mvp_mat as *const Mat4 as *const f32);
gl::Uniform3fv (unis ["object_space_light"], 1, &object_space_light as *const Vec4 as *const f32);
gl::Uniform3fv (unis ["albedo"], 1, &orange as *const Vec3 as *const f32);
point_to_model (&attrs, &model);
gl::DrawElements (gl::TRIANGLES, (model.meshes [0].num_triangles * 3) as i32, gl::UNSIGNED_INT, &model.get_index_slice (0) [0] as *const u8 as *const c_void);
if true {
gl::Uniform3fv (unis ["albedo"], 1, &green as *const Vec3 as *const f32);
gl::DrawElements (gl::TRIANGLES, (model.meshes [1].num_triangles * 3) as i32, gl::UNSIGNED_INT, &model.get_index_slice (1) [0] as *const u8 as *const c_void);
}
let draw_sky = true;
if draw_sky {
//println! ("Drawing sky");
gl::UniformMatrix4fv (unis ["mvp"], 1, FALSE_U8, &sky_mvp_mat as *const Mat4 as *const f32);
gl::Uniform3fv (unis ["albedo"], 1, &white as *const Vec3 as *const f32);
gl::Uniform3fv (unis ["min_bright"], 1, &white as *const Vec3 as *const f32);
gl::Uniform3fv (unis ["min_albedo"], 1, &black as *const Vec3 as *const f32);
gl::Uniform1i (unis ["texture"], 0);
point_to_model (&attrs, &sky_model);
gl::DrawElements (gl::TRIANGLES, (sky_model.meshes [0].num_triangles * 3) as i32, gl::UNSIGNED_INT, &sky_model.get_index_slice (0) [0] as *const u8 as *const c_void);
}
}
window.gl_swap_window ();
::std::thread::sleep (Duration::from_millis (15));
}
}
#[cfg (test)]
mod tests {
use super::*;
#[test]
pub fn iqm () {
let data = load_small_file ("pumpking.iqm");
{
let model = IqmHeader::from_slice (&data [..]).unwrap ().1;
assert_eq! (model.fields [1], 90368);
assert_eq! (model.fields [2], 0);
assert_eq! (model.fields [iqm_consts::VERSION], 2);
}
{
let model = IqmModel::from_slice (&data [..]);
println! ("{:?}", model.meshes);
println! ("{:?}", model.vertexarrays);
}
}
}