ptth/bare_minimum_crypto/cpp/bmc_test.cpp

277 lines
6.0 KiB
C++

#include <chrono>
#include <iostream>
#include <optional>
#include <stdint.h>
#include <string>
#include <vector>
#include <sodium.h>
#include "cpp-base64/base64.h"
#include "json.hpp"
#include "string_helpers.h"
#include "time_helpers.h"
using namespace std;
using nlohmann::json;
using namespace BareMinimumCrypto;
struct ExpiringSignature {
string cert_s;
vector <uint8_t> sig;
// C++ nonsense
bool operator == (const ExpiringSignature & o) const {
return
cert_s == o.cert_s &&
sig == o.sig
;
}
bool operator != (const ExpiringSignature & o) const {
return ! (*this == o);
}
};
void try_sodium_init () {
if (sodium_init () < 0) {
throw std::runtime_error ("Can't initialize libsodium");
}
}
bool is_pubkey_length (const vector <uint8_t> & v) {
return v.size () == crypto_sign_PUBLICKEYBYTES;
}
optional <vector <uint8_t>> try_verify_signed_data (
const ExpiringSignature & sig,
const vector <uint8_t> & pubkey,
int64_t now
) {
try_sodium_init ();
if (! is_pubkey_length (pubkey)) {
return nullopt;
}
if (crypto_sign_verify_detached (
sig.sig.data (),
(const uint8_t *)sig.cert_s.data (),
sig.cert_s.size (),
pubkey.data ()
) != 0) {
return nullopt;
}
const json j = json::parse (sig.cert_s);
const int64_t not_before = j ["not_before"];
const int64_t not_after = j ["not_after"];
if (now < not_before) {
return nullopt;
}
if (now > not_after) {
return nullopt;
}
const string payload_b64 = j ["payload_b64"];
const auto payload = std::move (*BareMinimumCrypto::base64_decode (payload_b64));
return payload;
}
optional <vector <uint8_t>> verify_signed_data (
const ExpiringSignature & sig,
const vector <uint8_t> & pubkey,
int64_t now
) {
try {
return try_verify_signed_data (sig, pubkey, now);
}
catch (json::exception &) {
return nullopt;
}
}
optional <vector <uint8_t>> verify_cert_and_data (
const ExpiringSignature & signed_cert,
const ExpiringSignature & signed_data,
const vector <uint8_t> & root_pubkey,
int64_t now
) {
auto subkey_opt = verify_signed_data (signed_cert, root_pubkey, now);
if (! subkey_opt) {
return nullopt;
}
const auto subkey = std::move (*subkey_opt);
return verify_signed_data (signed_data, subkey, now);
}
optional <vector <uint8_t>> verify_cert_and_data (
const ExpiringSignature & signed_cert,
const ExpiringSignature & signed_data,
const vector <uint8_t> & root_pubkey
) {
return verify_cert_and_data (signed_cert, signed_data, root_pubkey, get_seconds_since_epoch ());
}
optional <vector <uint8_t>> verify_signed_data (
const ExpiringSignature & sig,
const vector <uint8_t> & pubkey
) {
return verify_signed_data (sig, pubkey, get_seconds_since_epoch ());
}
class SigningKey {
vector <uint8_t> pk;
vector <uint8_t> sk;
public:
SigningKey () {
try_sodium_init ();
pk.resize (crypto_sign_PUBLICKEYBYTES);
sk.resize (crypto_sign_SECRETKEYBYTES);
crypto_sign_keypair (pk.data (), sk.data ());
}
vector <uint8_t> pubkey () const {
return pk;
}
string pub_to_base64 () const {
return base64_encode (pk);
}
optional <ExpiringSignature> sign_base64 (
const string & payload_b64,
int64_t duration,
int64_t now
) const {
try_sodium_init ();
if (duration > about_1_year) {
return nullopt;
}
const auto not_after = now + duration;
const json j {
{"not_before", now},
{"not_after", not_after},
{"payload_b64", payload_b64},
};
const auto cert_s = j.dump ();
vector <uint8_t> sig;
sig.resize (crypto_sign_BYTES);
crypto_sign_detached (sig.data (), nullptr, (const uint8_t *)cert_s.data (), cert_s.size (), sk.data ());
return ExpiringSignature {
cert_s,
sig,
};
}
optional <ExpiringSignature> sign_key (const SigningKey & k, int64_t now) const
{
return sign_base64 (k.pub_to_base64 (), about_3_months, now);
}
optional <ExpiringSignature> sign_data (const vector <uint8_t> & v, int64_t now) const
{
return sign_base64 (base64_encode (v), about_1_week, now);
}
};
int happy_path () {
// We generate a root key and keep it somewhere safe
// (offline, hopefully)
SigningKey root_key;
cerr << "Root pub key " << root_key.pub_to_base64 () << endl;
if (test_time () != 0) {
return 1;
}
// The server generates a signing key
SigningKey signing_key;
cerr << "Signing key " << signing_key.pub_to_base64 () << endl;
const auto now = get_seconds_since_epoch ();
// That signing key signs some important data
const auto important_data = copy_to_bytes ("Nikolai, Anna, Ivan, Mikhail, Ivan, Nikolai, Anna. 7 4 1 4 3 5 7 4");
const ExpiringSignature signed_data = std::move (*signing_key.sign_data (important_data, now));
// The server signs our temporary signing key
const ExpiringSignature cert = std::move (*root_key.sign_key (signing_key, now));
{
// Check that a different time results in a different cert
const auto cert_2 = std::move (*root_key.sign_key (signing_key, now));
const auto cert_3 = std::move (*root_key.sign_key (signing_key, now + 1));
if (cert != cert_2) {
cerr << "Certs should have been identical" << endl;
return 1;
}
if (cert == cert_3) {
cerr << "Certs should have been different" << endl;
return 1;
}
if (cert == cert_3) {
cerr << "Signatures should have been different" << endl;
return 1;
}
}
{
cerr << "Cert:" << endl;
cerr << cert.cert_s << endl;
cerr << base64_encode (cert.sig) << endl;
}
// The receiver verifies the data by the root public key,
// even though the receiver has never seen the sub-key.
const auto root_pubkey = root_key.pubkey ();
auto verified_opt = verify_cert_and_data (cert, signed_data, root_pubkey);
if (! verified_opt) {
cerr << "Receiver couldn't verify cert and data" << endl;
return 1;
}
const auto verified = std::move (*verified_opt);
if (verified != important_data) {
cerr << "Verified payload did not match expected payload" << endl;
return 1;
}
return 0;
}
int main () {
if (test_base64 () != 0) {
return 1;
}
if (happy_path () != 0) {
return 1;
}
cerr << "All good." << endl;
return 0;
}